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Steady shearing flows of deformable,
inelastic spheres

Diego Berzi*a and James T. Jenkinsb

We extend models for granular flows based on the kinetic theory beyond the critical volume fraction at

which a rate-independent contribution to the stresses develops. This involves the incorporation of a

measure of the duration of the particle interaction before and after this volume fraction. At volume

fractions less than the critical, the stress components contain contributions from momentum exchanged

in collisions that are influenced by the particle elasticity. At volume fractions greater than the critical, the

stress components contain both static contributions from particle elasticity and dynamic contributions

from the momentum transfer associated with the release of elastic energy by the breaking of force

chains. A simple expression for the duration of a collision before and after the critical volume fraction

permits a smooth transition between the two regimes and predictions for the components of the stress

in steady, homogeneous shearing that are in good agreement with the results of numerical simulations.

Application of the theory to steady, inhomogeneous flows reproduces the features of such flows seen in

numerical simulations and physical experiments.

Introduction

Granular materials that are comprised of nearly spherical
particles exhibit behaviour that ranges from that of a gas to
that of a solid, depending on the nature of the interaction
between the grains. These interactions depend upon the volume
fraction of the solid, and the volume fraction is sensitive to the
loading applied to the aggregate. The range of behaviours that
granular materials exhibit parallels that seen in other systems of
soft matter, such as colloids and non-Brownian suspensions.1,2

In shearing flows driven, for example, by the relative motion
of two rigid, bumpy boundaries at volume fractions less than
about 0.49, the spheres interact through collisions that can be
regarded as instantaneous, binary, and uncorrelated. In this
case, methods from the kinetic theory of dense gases that take
into account the energy lost in a collision3–5 can be used to
predict the relationship between the forces necessary to main-
tain the flow and the rate of shearing. When the influence of
the boundaries is negligible, both the pressure and the shear
stress are quadratic in the shear rate; as a consequence,
the strength of the velocity fluctuations, the analogue of the
temperature, is quadratic in the shear rate. Because there is
little scale separation in granular flows, there is no compelling
reason why continuum descriptions should apply. However,

comparisons between predictions of continuum theories and
the profiles of volume fraction, velocity, and temperature mea-
sured in physical experiments and discrete numerical simula-
tions of steady flows show relatively good agreement6–9 and this
encourages their use.

Above a volume fraction of 0.49, at which a first-order phase
transition between disordered and ordered states in an equili-
brated system of colliding hard spheres is first possible,10 mole-
cular dynamics simulations show that correlations between
collisions begin to influence the relationship between the com-
ponents of the stress and the shear rate.11–13 The introduction of
an additional length scale in the relation for the rate of collisional
dissipation of fluctuation energy associated with the size of
clusters of interacting spheres modifies the stress relations in
an appropriate way.9,14–16 The length scale is determined by the
competition between the orienting influence of the flow and the
randomizing influence of the collisions, using a local balance
between the rates of production and dissipation of fluctuation
energy. This approach has been tested against discrete element
simulations of steady flows in a variety of flow configurations.17–20

These extended stress relations apply until the mean separa-
tion distance between the edges of the spheres vanishes at least
along the direction of principal compression, at which point,
the stresses for hard spheres become singular.20 The volume
fraction at which this occurs is less than that for random close
packing and is seen in numerical simulation to depend on the
coefficient of sliding friction.21 It can be interpreted as ‘‘the
jamming transition’’ for shearing flows of compliant, frictional
spheres.1,22–25 However, discrete numerical simulations in two
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dimensions of the shearing of compliant, frictional, circular
disks26–28 indicate that there are three different jamming
transitions. Consequently, more work is required in three
dimensions to determine if, in fact, the volume fraction at
which the stresses become singular is unique. We note that,
because of the anisotropy inherent in a shearing flow, the
critical volume fraction provides only a rough characterization
of the singular state; descriptions of the anisotropy of this state
are beginning to be developed.29

Replacing a rigid contact with a compliant contact has three
consequences: it permits the introduction of a time associated
with the duration of a collision before the hard-sphere singularity;30

it relaxes the singularity of the stresses at this singularity; and it
allows prediction of the stresses at volume fractions greater than
that at the singularity. The stresses at volume fractions beyond the
hard-sphere singularity have parts that depend on the shear rate
and parts that depend on the deformation of the contact. We refer
to these as the rate-dependent and rate-independent31,32 parts of
the stress.

In this paper, we calculate stress relations for steady, shear-
ing flows of deformable, elastic spheres that apply at volume
fractions less than, at, and greater than the hard-sphere singu-
larity. We do this by extending the stress relations of kinetic
theories to collisions with a finite duration and employing the
elastic component of the contact to describe the stresses
associated with enduring contact of the spheres.

We first focus on steady, homogeneous shearing flows and
compare the predicted stresses with those measured in numerical
simulations.21,33,34 The predictions compare well over the range of
volume fraction before and after the hard sphere singularity and
over eleven orders of magnitude of the contact stiffness. The model
requires no parameters other than the contact stiffness, coefficient
of collisional restitution, and sliding friction of the spheres. An
interesting result is that the viscosity below the singularity is seen
to increase with the fluctuation energy, as in a dense gas, but to
decrease with fluctuation energy above the singularity, as in a
liquid. We also consider steady, inhomogeneous shearing flows, in
which the conduction of fluctuation energy is important, and
reproduce, for spheres, the qualitative feature of stress relations
measured in discrete numerical simulations of circular disks.35

Theory

We consider a steady, uniform, unidirectional, shearing flow of
spheres of mass density rp and diameter d. Their interactions
are characterized, in part, by a normal coefficient of restitution
e and contact friction m. We take n to be the solid volume
fraction, and x and y to be the flow and shear directions,
respectively. Then, u is the only component of the mean velocity
of the particles and u0 is the shear rate, with the prime denoting
a derivative with respect to y. We define the critical volume
fraction, nc, as the volume fraction above which a rate-
independent component of the stresses develops. At greater
volume fractions, the mean distance between at least some
sphere centres is less than one diameter – indicating persistent

deformations of such particles.24 We distinguish between flows
at volume fraction less than and greater than nc, referring to those
at volume fractions less than nc as collisional and those above nc as
deformational. We first carry out calculations for contact forces
that are linear in the contact deformation and indicate the
modifications for non-linear contacts. Also, for the sake of simpli-
city, we limit our analysis to dense flows; in these, the dependence
of the coefficients of kinetic theory on the volume fraction is
proportional to that of the radial distribution function at contact.

Collisional regime

In this regime, the stresses are due to the transfer of momentum
in collisions, the mean separation distance between the centres
of spheres is greater than one diameter, and the granular
material behaves as a dense gas. Consequently, we begin with
the stress relations of kinetic theory, extended to include an
additional length scale in the rate of collisional dissipation,14,15,18

and modify them to incorporate the deformation of a contact
during a collision.32 When the contact is compliant, the time
interval between two successive collisions is equal to the time of
free flight, tf, plus the duration of the contact, tc.

The time of free flight is (p1/2/24)d/(GT1/2), where G is the
product of the volume fraction and the radial distribution func-
tion at collision and T is the one-third the mean-square of the
velocity fluctuations – the granular temperature.36 For the volume
fraction dependence of the radial distribution function g0 of two
colliding spheres, we adopt the expression of Vescovi et al.,19

which smoothly interpolates between the form due to Carnahan
and Starling, appropriate at small volume fractions, and that
which diverges at a critical volume fraction:20

g0 ¼ f
2� n

2ð1� nÞ3 þ ð1� f Þ 2

nc � n
; (1)

where f = (nc + n � 0.8)(nc � n)/(nc � 0.4)2. For rigid contacts,
shearing ceases at the critical volume fraction and the system is
said to be jammed. For deformable contacts, discrete numerical
simulations show that the value of the critical volume fraction
depends only on the coefficient of friction.21

The duration of a collision is proportional to the ratio of
the particle diameter to the elastic wave speed in the particle:
c = (E/rp)1/2, where E the Young’s modulus of the material of the
spheres.30 We take the coefficient in the proportion to be 1/5,
which provides the best fitting with the simulations of simple
shearing shown later. Consequently, the frequency of collisions –
the inverse of the time interval between two successive collisions –
is reduced for deformable particles with respect to that for rigid
particles by the factor

tf

tf þ tc
¼ p1=2

24

d

GT1=2

p1=2

24

d

GT1=2
þ d

5c

� ��1

¼ 1þ 24G

5p1=2
rpT
E

� �1=2
" #�1

;

(2)

Because the collisional stresses, the collisional rate of dissipa-
tion of the fluctuation energy, and the flux of fluctuation energy
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are all proportional to the frequency of collision, the constitu-
tive relations of extended kinetic theory for rigid particles, a
modification of those of Garzo and Dufty,4 must be multiplied
by the factor of eqn (1) when applied to deformable spheres.

The rigid and deformable contributions to the constitutive
relation for the pressure p and the shear stress s are best seen
when the inverses of these are written as the sums of the
inverses of the two contributions:

p�1 ¼ 2ð1þ eÞGrpnT
h i�1

þ 5p1=2nð1þ eÞ
12

rpET
� �1=2� ��1

; (3)

and

s�1 ¼ 8JG

5p1=2
rpnT

1=2d u0j j
� ��1

þ nJ
3

rpE
� �1=2

d u0j j
� ��1

; (4)

respectively, where the dependence of J on the coefficient
of restitution is given by J = (1 + e)/2 + p(1 + e)2(3e � 1)/[96 �
24(1 � e)2 � 20(1 � e2)].15 The first terms on the right-hand
sides of eqn (3) and (4) are the inverses of the constitutive
relations for rigid spheres; the second terms are the inertial-
elastic contributions,37 called the intermediate contributions
by Chialvo et al.,21 who explored shearing of deformable
spheres in discrete numerical simulations. Unlike the fits by
Chialvo et al. to the constitutive relations,21 the expressions in
eqn (3) and (4) depend also on the granular temperature; this
permits the analysis of inhomogeneous shearing flows, such as
those between rigid, bumpy boundaries,38 in which the tem-
perature is not proportional to the square of the shear rate.

A consequence of the extension of the frequency of colli-
sions from rigid to deformable particles is that the pressure
and the shear stress are no longer singular at n = nc. For volume
fractions close to the critical, G tends to infinity; hence, the first
terms on the right hand side of eqn (3) and (4) vanish, while the
other terms remain finite.

Similarly, the expressions of the rate of collisional dissipa-
tion of the fluctuation energy G is

G�1 ¼
12 1� e2
� 	

G

p1=2L
rpnT

3=2

� ��1
þ

5 1� e2
� 	

n
2L

rpE
� �1=2

T

� ��1
;

(5)

where e is an effective coefficient of restitution, which takes into
account the additional dissipation of the fluctuation energy due
to the rotation and contact friction of the particles.39,40 In
eqn (5), L is an additional length scale related to the correlation
of collisions at volume fractions larger than 0.49.14 It is
determined by a balance between the ordering influence of
the shearing and the randomizing influence of the collisions:

L ¼ f0d
u0d

T1=2
; (6)

where discrete numerical simulations indicate that the coeffi-
cient f0 is singular at random close packing:20

f0 ¼
4J

15 1� e2ð Þ

� �1=2
1þ 26ð1� eÞ

15

maxðn � 0:49; 0Þ
0:64� n

� �
: (7)

When the flow interacts with boundaries, there is a flux of
fluctuation energy directed either into or out of the flow.38,41,42

In such situations, the granular temperature must be deter-
mined as a solution of the differential equation that expresses
the balance of fluctuation energy. The constitutive relation for
the inverse of the flux of fluctuation energy Q for deformable
spheres is

Q�1 ¼ �4MG

p1=2
rpndT

1=2T 0
� ��1

þ �5nM
6

rpE
� �1=2

dT 0
� ��1

(8)

where M = (1 + e)/2 + 9p(1 + e)2(2e � 1)/[128 � 56(1 �e)].15 Here,
we have ignored the contribution to the energy flux propor-
tional to the gradient of the volume fraction,4 which is negli-
gible for dense flows.

Deformational regime

In this case, the mean separation distance, at least along the
direction of the principal compression axis, is zero. Volume
fractions larger than nc can be achieved in a disordered assembly
of particles only if some particles deform. Therefore, an elastic
component of the stresses associated with such persistent defor-
mations develops. For isotropic compression of an isotropic
aggregate, the elastic contribution to the pressure is proportional
to the product of the normal component of the contact force P,
the separation between the centres d, the number of contacts per
sphere Z, and the number of spheres per unit volume 6n/(pd3):43

pe ¼
PnZ
pd2

; (9)

For linear contacts, P is related to the normal component of the
contact displacement d through the contact stiffness pdE/4:33

P ¼ p
4
dEd; (10)

The contact displacement can be related to the volume fraction
at a fixed coordination number by treating the particle defor-
mations as overlapping. Then, the ratio of the total overlapped
volume to the particle volume gives the increase in the volume
fraction from the critical value,

n
nc
¼ 1þ Z2pd2 d=2� d=3ð Þ

pd3=6
’ 1þ 6Z

d
d

� �2

; (11)

in which we assume that the d/d ratio is small. Then, with
eqn (10), pe is proportional to the square-root of the product of
(n � nc) and Z. Discrete numerical simulations of simple
shearing of frictional, deformable spheres33 indicate that the
coordination number is approximately linear in the increase of
volume fraction from nc, with a slope of about ten, at least for
the softest particles. With this, we find that the elastic pressure
is roughly equal to the product of E and the excess of the
volume fraction above the critical. On the basis of fitting with
numerical simulations, we adopt the expression

pe ¼ 0:6
p
4
n � ncð ÞE: (12)

For stiffer particles, the coordination number scales with the
square root of the increase of volume fraction from nc,29,33 but

Soft Matter Paper



4802 | Soft Matter, 2015, 11, 4799--4808 This journal is©The Royal Society of Chemistry 2015

the pressure still increases linearly with the difference n � nc in
steady, homogeneous shearing.29 Consequently, we assume
that eqn (12) holds for any value of the particle stiffness.

Shearing forces the individual particles to make and break
chains of frictional contacts, sometimes violently,44 so that a
component of the stresses associated with the transfer of
momentum is still present at n 4 nc, with the frequency of
transfer equal to the inverse of contact duration. We model this
elastic-inertial pressure in the same way as we model the
inertial-elastic pressure in the collisional regime. The total
pressure is the sum of the elastic-inertial and the purely elastic
components,

p ¼ 5p1=2nð1þ eÞ
12

rpET
� �1=2

þ0:6p
4
n � ncð ÞE: (13)

The first and second terms on the right hand side of eqn (13)
can be identified with, respectively, the intermediate and quasi-
static pressures of Chialvo et al.21

We take the constitutive relation for the elastic-inertial shear
stress to be the inverse of the inertial-elastic contribution to
eqn (4). Once again, the total shear stress is the sum of two
components: the elastic-inertial and the purely elastic. In the
steady state, both the purely elastic shear stress and the purely
elastic pressure pe are proportional to the stiffness, so they are
proportional to each other. Hence, the total shear stress may be
written as

s ¼ nJ
3

rpE
� �1=2

d u0j j þ Zpe: (14)

where Z is the constant of proportionality. Discrete numerical
simulations of unsteady, homogeneous shearing in the rate-
independent regime,29 indicate that the ratio of the purely
elastic shear stress to the purely elastic pressure is proportional
to the anisotropy of the contact network. Because the ratio of
the elastic-inertial shear stress to the elastic-inertial pressure is
sensitive to this anisotropy in the same way, we determine Z
from this ratio:

Z ¼ 4J

5p1=2ð1þ eÞ
d u0j j
T1=2

: (15)

The values of Z obtained from eqn (15) in simple shearing20

with different particle friction coefficients are in agreement
with the measurements of the constant stress ratio obtained in
numerical simulations when n 4 nc and the particles are
sufficiently rigid.21

Because of the energy released by the breaking of chains, the
rate of dissipation of the fluctuation energy and the fluctuation
energy flux also persist at volume fractions larger than the
critical. We take the dissipation rate to be the inverse of the
inertial-elastic contribution to eqn (5),

G ¼
5 1� e2
� 	

n
2L

rpE
� �1=2

T ; (16)

and we assume that the correlation length is still given by
eqn (6), with f0 evaluated at n = nc. Finally, we take the flux of

fluctuation energy to be the inverse of the inertial-elastic
contribution to eqn (8),

Q ¼ �5nM
6

rpE
� �1=2

dT 0: (17)

Modifications for Hertzian contacts

Real spheres interact through Hertzian contacts. In this case,
the duration of contact is45

tc ¼ 1:47
5
ffiffiffi
p
p

4
rp
1� c2

E

� �2=5
d

ðT=3Þ1=10; (18)

where c is Poisson’s ratio, and we have assumed the pre-
collisional velocity equal to (T/3)1/2. Then, eqn (2) becomes

tf

tf þ tc
¼ 1þ 1:47

24G

p1=2
31=45

ffiffiffi
p
p

4
rp
1� c2

E
T

� �2=5
" #�1

: (19)

Using this, the derivation the constitutive relations for the
inertial stresses, the rate of dissipation and the flux of fluctua-
tion energy is straightforward.

For Hertzian spheres, the normal contact force is43

P ¼ 2

9
ffiffiffi
3
p Sd2

1� c
6d
d

� �3=2

; (20)

where S is the shear modulus. Eqn (20) must be used instead of
eqn (10) in eqn (9) to calculate the purely elastic pressure. If the
relation between the volume fraction and the coordination
number is approximately linear, we obtain

pe /
S

1� c
n � ncð Þ; (21)

where the coefficient of proportionality is of order one. This
dependence has been observed in the numerical simulations.21

Simple shearing

We next test the theory against numerical simulations of steady,
homogeneous shearing of compliant, frictional spheres that
interact through linear springs and dashpots in parallel.21,33,34

In this case, Young’s modulus is E = 4k/(pd), where k is the
stiffness of the normal spring.33

In simple shearing, the volume fraction and the granular
temperature are uniform, so that the balance of fluctuation
energy reduces to

(s � Zpe)|u0| = G, (22)

where we have assumed that the work of the purely elastic shear
stress is completely recoverable and does not produce fluctua-
tion energy.31,32 This gives

T

u02d2
¼ 2J

15 1� e2ð Þ 1þ 26ð1� eÞ
15

maxðn � 0:49; 0Þ
0:64� n

� �
; (23)

for volume fractions less than the critical, and

T

u02d2
¼ 2J

15 1� e2ð Þ 1þ 26ð1� eÞ
15

nc � 0:49

0:64� nc

� �
; (24)
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for volume fractions larger than the critical. Eqn (23) and (24) imply
that in simple shearing, the granular temperature, made dimen-
sionless with the product of the particle diameter and the shear rate,
is a function only of the volume fraction, and constant for n4 nc.

In Fig. 1a and b, we compare the predicted dimensionless
granular temperature with the measurements in discrete numer-
ical simulations of simple shearing: in Fig. 1a, when e = 0.7 and
m = 0.5, so that nc = 0.587 and e = 0.53;21,40 and, in Fig. 1b, when
e = 0.7 and m = 0.1, so that nc = 0.613 and e = 0.59.21,40 The
numerical simulations have been performed for dimensionless
particle stiffness k/(rpu02d3) ranging from 10 to 107.

The agreement is good when m = 0.1, and acceptable when
m = 0.5, at least for volume fractions less than the critical value.

As anticipated, the dimensionless granular temperature is
nearly constant beyond the transition, although its value
increases with the dimensionless particle stiffness and seems
to saturate, if the spheres are stiff enough. We associate the
deviations from the numerical simulations with multiple inter-
actions, which are not presently incorporated in the inertial
parts of the constitutive relations.

We could certainly improve the agreement with the mea-
surements by modifying the function f0 in the correlation
length, which has been accurately tested only against the
results of numerical simulations of frictionless particles,19

to incorporate the influence of the particle friction, and by
modelling the role of multiple interactions, at least in the
dissipation rate. We prefer to avoid those additional complications
for several reasons. First, the agreement between the theory and
the numerical results is less adequate when m = 0.5, n4 nc and
the particles are stiff. In that case, the elastic-inertial component
is a small fraction of the total stress, so that a poor estimate of
the granular temperature does not substantially affect the
predictions of the pressure and the shear stress. Also, a friction
coefficient of 0.5 is rather large; most real particles are char-
acterized by friction coefficients closer to 0.1.46 Finally, the
measurements of Ji and Shen33 differ from those of Chialvo and
Sundaresan34 for the same dimensionless stiffness of 106, indicating
an uncertainty in the measurements. We postpone the refine-
ment of the model to improve the prediction of the granular
temperature for large friction and to include the role of multiple
collisions to future work.

We can re-write the full constitutive relations for the pres-
sure and the shear stress in dimensionless terms using the
density and diameter of the spheres, the shear rate, and the
particle stiffness instead of Young’s modulus, making use of
eqn (15):

p

rpu02d2

 !�1
¼ 2ð1þ eÞnG T

u02d2

� ��1

þ 5p1=2nð1þ eÞ
12

4

p
T

u02d2

k

rpu02d3

 !1=2
2
4

3
5
�1

;

(25a)

if n o nc, while

p

rpu02d2
¼ 5p1=2nð1þ eÞ

12

4

p
T

u02d2

k

rpu02d3

 !1=2

þ 0:6 n � ncð Þ k

rpu02d3
;

(25b)

if n Z nc; and

s

rpu02d2

 !�1
¼ 8JnG

5p1=2
T

u02d2

� �1=2
" #�1

þ nJ
3

4

p
k

rpu02d3

 !1=2
2
4

3
5
�1

;

(26a)

Fig. 1 Dimensionless granular temperature as a function of the volume
fraction: predicted (lines) and measured by Ji and Shen33 and Chialvo and
Sundaresan34 (symbols). Here, and in the following plots, the measured results
are for dimensionless particle stiffness equal to: 101 (hollow upper triangles);
102 (hollow lower triangles); 103 (hollow diamonds); 104 (hollow squares);
105 (hollow circles); 106 (stars); 107 (solid circles); 108 (solid squares); 109 (solid
diamonds); 1010 (solid lower triangles); 1011 (solid upper triangles).
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if n o nc, while

s

rpu02d2
¼ 4J

5p1=2ð1þ eÞ
T

u02d2

� ��1=2
p

rpu02d2
; (26b)

if n Z nc. In simple shearing, these are functions only of n,
through eqn (23) and (24), and the dimensionless stiffness.

Fig. 2a and b show the predicted dimensionless pressure and
shear stress, compared with the results of numerical simulations
of simple shearing,21,33,34 for a range of dimensionless stiffness,
k/(rpu02d3), from 10 to 1011 when e = 0.7 and m = 0.5.

Also shown are the curves for rigid particles, that is, for
infinite k, for which the collisions are instantaneous and binary
and no disordered assembly is possible beyond nc. The predic-
tions agree well with the simulations. The volume fraction at

which the data depart from the rigid curve increases with the
particle stiffness. For real spheres, the collisions can be con-
sidered instantaneous and binary up to volume fractions close
to the critical value.

If the stiffness and the particle diameter are used to scale the
stresses, the results from the numerical simulations collapse at
volume fractions larger than nc, where the purely elastic stres-
ses dominate, as already observed by Ji and Shen.33 The
agreement between the predictions and the numerical simula-
tions is again remarkable (Fig. 3).

Fig. 4 shows the comparison between the present theory,
the constitutive relation for the pressure suggested by Chialvo
et al.21 through fitting with their simulations, and the measure-
ments in discrete numerical simulations21,33,34 when e = 0.7,

Fig. 2 Dimensionless (a) pressure and (b) shear stress as functions of the
volume fraction as predicted (dotted lines) and measured by Ji and Shen,33

Chialvo et al.,21 and Chialvo and Sundaresan34 (symbols), when e = 0.7 and
m = 0.5. The symbols have the same significance as in Fig. 1. Also shown are
the theoretical curves for perfectly rigid particles (solid lines).

Fig. 3 (a) Pressure and (b) shear stress made dimensionless using the
particle stiffness and diameter versus volume fraction as predicted (dotted
lines) and measured by Ji and Shen,33 Chialvo et al.,21 and Chialvo and
Sundaresan34 (symbols) when e = 0.7 and m = 0.5. The symbols have the
same significance as in Fig. 1.
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m = 0.5, and the dimensionless stiffness is 106. The data tests the
validity of the linear dependence of the purely elastic pressure on
the volume fraction against the power law dependence with an
exponent equal to 2/3 suggested by Chialvo et al.21

Fig. 5 shows the comparison between the predicted dimen-
sionless pressure and shear stress and those measured in
discrete numerical simulations by Chialvo et al.,21 Chialvo
and Sundaresan,34 and Shen (personal communication) for
various dimensionless stiffness, when e = 0.7 and m = 0.1.

Inhomogeneous shearing in the
deformational regime

In inhomogeneous, steady flows, in which n4 nc, the shear rate
is small and the production of fluctuation energy is negligible.
In this case, the balance of fluctuation energy is, simply,

�dQ
dy
¼ G; (27)

where y is taken to increase in the direction of increase of the
volume fraction. That is, the diffusion of the fluctuation energy
balances its dissipation.42 Using eqn (16) and (17), we obtain

d2T

dy2
¼ 1

l2
T ; (28)

where l2 = dLM/[3(1 � e2)]. Eqn (28) can be solved to determine
the distribution of the granular temperature in the flow. As a
first approximation, we take the correlation length L to be
constant and equal to its value in simple shearing, determined
using eqn (24) in eqn (6),

L

d
¼ 1þ 26ð1� eÞ

15

nc � 0:49

0:64� nc
: (29)

With this, l is constant and the solution to eqn (28) is

T / exp �y
l

� �
: (30)

Creeping flow

Given the distribution of temperature, we seek to determine the
velocity profile in the creeping bed below an inclined, colli-
sional shearing flow that is driven by gravity.47 There the stress
ratio is given by eqn (15), and is proportional to the ratio of the
shear rate to the square root of the granular temperature.
If there are no sidewalls in such a flow, the ratio of the shear
stress to the pressure is constant and equal to the tangent of the
angle of inclination of the free surface. Then, the shear rate in
the bed is directly proportional to the square root of the
granular temperature and the velocity decays exponentially,

Fig. 4 Dimensionless pressure as a function of the volume fraction as
predicted by the present model (solid line), the model of Chialvo et al.21

(dotted line) and measured by Ji and Shen,33 Chialvo et al.,21 and Chialvo
and Sundaresan34 (symbols) when e = 0.7, m = 0.5 and k/(rpu02d3) = 106.

Fig. 5 Dimensionless pressure (a) and shear stress (b) as functions of the
volume fraction as predicted (dotted lines) and measured by Chialvo et al.,21

Chialvo and Sundaresan,34 and Shen (personal communication) (symbols)
when e = 0.7 and m = 0.1. The symbols have the same significance as in Fig. 1.
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with a decay length equal to 2l. For e = 0.7 and m = 0.5, the decay
length of the velocity is roughly equal to two diameters, close to
what is observed in the creeping flow of glass spheres.47

Annular shear flow

Another interesting flow is annular shearing. This was investi-
gated by Koval et al.35 in two-dimensional discrete element
simulations of compliant, frictional, circular disks and mod-
elled by Kamrin and Koval48 using a second-order differential
equations for the shear rate. Here, we focus on the three-
dimensional case, in which spheres are sheared between two
coaxial cylinders, with the gravity acting perpendicular to the
plane of shearing. We solve for the flow field in a plane
perpendicular to the axis of the cylinders. In doing this, we
take R to be the radius of the inner cylinder, which is rotating at
constant angular velocity, and 2R to be the radius of the outer
cylinder, which is fixed, as in Koval et al.35 In this case, y is the
radial coordinate, with y = 0 at the centre of the cylinders. The
shear stress in the flow is distributed according to

s ¼ sR
R

y

� �2

; (31)

where sR is the value of the shear stress at the surface of the
inner cylinder; while the pressure p is essentially constant.35

We assume that the volume fraction is everywhere larger than
nc. This is the case when the tangential velocity of the inner
cylinder UR is less than a certain value UM.35 The numerical
simulations indicate that sR is independent of the angular
velocity of the inner cylinder, so sR = sM, and the ratio sM/p is
equal to the value Z in simple shearing.35 With the stress ratio
given by eqn (15) and (30), we obtain

I ¼ 1

p
.
rp

� �1=2 5p1=2ð1þ eÞ
4J

sM

p

R

y

� �2

TR
1=2 exp �y� R

2l

� �
;

(32)

where I = d|u0|/(p/rp)1/2 is the so called inertial parameter.49

We assume that the slip velocity of the particles at the
surface of the inner cylinder is proportional to the square root
of the granular temperature, as is the case for collisional flows
over bumpy walls.41 Then, UR/UM = (TR/TM)1/2 and eqn (32) can
be written as

I

IM
¼ UR

UM

R

y

� �2

exp �y� R

2l

� �
; (33)

where

IM ¼
5p1=2ð1þ eÞ

4J

sM

p

TM
1=2

p
.
rp

� �1=2 (34)

is the value of the inertial parameter at the surface of the inner
cylinder when UR = UM. When UR = UM, the granular tempera-
ture at y = R is TM, and, from eqn (13), has the value

TM ¼
144p2

25pnc2ð1þ eÞ2rpE
: (35)

If the value of R is changed at constant angular velocity, with
UR = UM, e = 0.7 and m = 0.5, we may employ eqn (31) and (33) to
obtain the curves shown in Fig. 6a. If R is kept constant and
the ratio UR/UM is changed at constant pressure, we obtain the
curves of Fig. 6b. The quantities s/sM and I/IM are the shear
stress and the inertial parameter, normalized by their respec-
tive values at the inner cylinder. These are in qualitative
agreement with the results of the numerical simulations of
Koval et al.,35 shown in their Fig. 8b and 10. In both cases, the
ratio s/sM, is less than unity; that is, the ratio of the shear stress
to the pressure is less than the yield stress ratio in simple
shearing.

Fig. 6 Normalized stress ratio versus normalized inertial parameter in an
annular shear cell for e = 0.7 and m = 0.5 and: (a) UR/UM = 1 and R = 25
(dotted line), R = 50 (solid line), R = 100 (dashed line) and R = 200 (dot-
dashed line); (b) R = 50 and UR/UM = 1 (solid line), UR/UM = 0.1 (dashed
line), UR/UM = 0.01 (dot-dashed line) and UR/UM = 0.001 (dotted line).
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Conclusions

We have proposed constitutive relations for the steady, shearing
flows of deformable, inelastic spheres that extend kinetic theories
of granular gases to incorporate correlated, non-instantaneous
collisions and rate-independent, elastic stresses. The latter are
associated with the development of persistent deformations
of the particles at volume fractions larger than a critical. The
deformability of the particles plays a crucial role in the model.
It permits a smooth transition between the collisional and
deformational regimes and results in stress components in the
deformational regime that contain both static contributions from
particle elasticity and dynamic contributions from the momen-
tum transfer associated with the release of elastic energy by the
breaking of force chains.

The theory has been tested against previous numerical simu-
lations of steady, homogeneous shearing of inelastic, frictional
spheres that interact through linear elastic contacts with stiff-
nesses that range over eleven orders of magnitude. The theory
also has the capacity to reproduce the exponentially decaying
velocity profile in erodible beds and the dependence of the
velocity on the radius and the angular velocity of the inner
cylinder in annular shear flows. Although the constitutive rela-
tions have been developed for dry granular flows with inertial
and frictional-elastic interactions, they are also relevant to the
description of shear thickening in dense suspensions.50,51 In
such systems, a rapid increase in viscosity accompanies the
jamming of frictional particles. For the slow shearing of com-
pliant, frictional spheres, we anticipate that constitutive rela-
tions similar to those derived here, with the inertial interactions
replaced by viscous interactions at volume fractions less than the
critical, will predict the increases in viscosity seen in the numer-
ical simulations and physical experiments.52

A final remark concerns the dependence of the viscosity – ratio
of the shear stress to the shear rate – on the granular temperature
predicted by the theory. When shearing takes place at a volume
fraction below the critical, eqn (4) shows that the viscosity is
proportional to T1/2; that is, it increases with the granular
temperature. This is the dependence of the molecular viscosity
on the thermodynamic temperature seen in molecular gases. On
the contrary, when shearing takes place at a volume fraction above
the critical, eqn (13) through (15) show that the viscosity is inversely
proportional to T1/2; that is, it decreases with the granular tem-
perature. This is the dependence of the molecular viscosity on the
thermodynamic temperature seen in liquids. Interestingly, statis-
tical physics models for the viscosity in liquids introduce a
potential energy to predict the decrease of the viscosity with the
temperature.53 Here, we have obtained a similar result by means of
mechanical arguments. Therefore, at least with respect to the
dependence of the viscosity on the temperature, the critical volume
fraction distinguishes between granular gases and granular liquids.
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